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ABSTRACT

The de fault dictionary approach has been found very useful for locating hard
failures (open circuits and short circuits) in nonlinear analog circuits. In this research
project, we have introduced several new techniques to enhance the capability of the de
fault dictionary. Among our new results, the most significant ones are: (1) The use of
the complementary pivot method to find test node voltages under all faults. (2) The
set-up of the fault dictionary in the form of integer codes instead of test node voltages.
The former technique makes it possible to rapidly analyze large circuits under all fault
conditions. The latter technique eliminates all arithemetic operations after test. Thus,
after the test on a faulty circuit has been made, the technician need only look up,
literally speaking, the fault dictionary to determine the fault.

This technical report contains a detailed description of the background material
and the new algorithms. The algorithms have been implemented in a digital computer
program. The result of the diagnosis of a video amplifier circuit by the computer pro-
gram is included in the report as an example. A companion report, TR-EE-82-22,
describes a new multifrequency method for soft failure analysis.
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1. INTRODUCTION

This research report consists of two volumes. The present volume describes new
approaches to dc test for identifying hard failures. The second volume describes ac
multifrequency test for identifying soft failures. Our philosophy in fault diagnosis is to
go through dc test first, and then followed by ac test when necessary. Since hard
failures account for about 80% of the faults in analog equipment, the dc test, which is
easier to perform than ac test, will be adequate for the majority of the cases. For the
remaining more difficult cases of soft failures, we rely on the ac multifrequency test
method.

In dc fault diagnosis of analog circuits, one applies dc inputs and measures dc out-
puts (voltages and/or currents). From the measured results one attempts to locate the
faulty components. Two approaches have been described in the literature for achieving
this goal:

(1) The component simulation approach [1]. This method is based on the dc small
signal equivalent circuit of the given nonlinear circuits. The circuit model used in the

-analysis is linear and resistive, since capacitances behave as open circuits and induc-
tances as short circuits in dc steady state. A set of small signal network functions
(short circuit admittances yij are considered in [1]) are expressed in terms of element
values some or all of which are unknowns. The measured values and the symbolic
expressions for these network functions together lead to a set of nonlinear algebraic
equations. The unknown element values (r, gn, etc.) are then found by the use of
Newton iteration or some minimization technique [1]. The faulty components are then
identified by determining whether the circuit's elements values are within or outside the
design tolerance margin.

It is clear that in this approach a large amount of computation must be done after
the testing is made. For this reason, it is also called a simulation-after-test approach.

As described in [1], this approach assumes the availability of various network func-
tions in symbolic forms. This seriously limits its usefulness. At present, all known
symbolic network analysis programs can only handle small networks in the order of 10
nodes and 35 branches 121. Until a breakthrough in the area of symbolic network
analysis happens, the approach of [1] is likely to remain of academic interest.

Instead of using the linear equivalent circuits, one can also consider the use of non-
linear circuit models in the simulation-after-test approach. Consider a diode for exam-
ple. Instead of representing it by a linear incremental resistance r, as done in [11, we
can also characterize it by the nonlinear model ID = Is(e9ND-1), and solve ror the unk-
nown parameters (Is,e). The diagnosability problem of this approach has been investi-
gated in [31, but a diagnosis algorithm is lacking at this time.

(2) The fault simulation approach [4]. This method is based on the nonlinear
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circuit model. Various component values are changed so as to simulate component

failures. The voltages of some judiciously selected test nodes are calculated under all
possible component failures. These calculated voltages, after suitable organization (see

Section 2 for details), constitute a "fault dictionary". After a test on the faulty circuit
has been made, the measured voltages are compared with those stored in the fault dic-
tionary. The fault is identified through the application of some fault location algorithm

(e.g. minimum sum-of-squared-errors, as in [4]).

We see that in this approach practically all computations (in the form of dc

analysis of a nonlinear circuit) are done before the testing of the faulty circuit. For this

reason it is also called a simulation-before-test approach, or a "fault dictionary"

approach. It should be pointed out that the fault dictionary concept need not be res-
tricted to dc inputs and outputs. At least for linear circuits we could consider the use
of ac inputs and outputs [5].

One obvious limitation of the fault dictionary approach, whether dc or ac, is its

inability to treat all possible failures of a component. Consider for example a resistor

R having 1000 ohms nominal value and 10% tolerance. Then when the value of R is

changed, due to whatever reason, to within (0, 950) or (1050, 00) ohms, the resistor is

considered as faulty. Clearly it is impossible to repeat the analysis of the circuit under

all possible failures even for this resistor alone. Therefore, in the fault dictionary
approach we consider only catastrophic component failures (or hard failures), namely

open circuits and short circuits. Thus the fault dictionary approach cannot diagnose

faults other than open circuits and short circuits. Despite this limitation, the fault dic-
tionary approach is useful because statistics shows that about 80% of failure in analog
equipment. are in the form of short and open circuits [4]. For the diagnosis of soft

failures, we rely on the multifrequency test methods [6, 19].

The use of de, instead ac inputs/outputs, brings fortL , ome further limitations:

short circuits of inductors and open circuits of capacitors are not detectable with the dc
approach. Nevertheless, the dc method is preferred over the ac method in fault dic-

tionaries for the following practical reasons: (a) dc measurements are easier to execute
than ac measurements; (b) A dc analysis, is less expensive than an ac analysis (cost

ratio approximately 1-2, see [7]); (c) The dc approach yields more direct information
about the operating points of semiconductor devices.

The dc fault dictionary approach has been successful for circuits of moderate com-

plexity, e.g., the video amplifier of [1]. When larger circuits are considered, two serious

difficulties arise:

(1) Both the storage and the computation time for the fault dictionary become

prohibitive;

(2) As the fault dictionary becomes less comprehensive, there is a greater chance of
encountering a fault not included in the dictionary, and hence not identifiable.
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The objective of the present research task is to develop new techniques to enhance

the capability of the dc fault dictionary approach. In Section 2, we first give a more

detailed description of an existing fault dictionary approach in order to see where the

difficulties lie. In Section 3, we present an overview of our proposed new techniques.

Sections 4 to 6 give the background material for the new approaches. Sections 7 and 8

describe new algorithms for compiling the fault dictionary. Section 9 gives a complete

example of applying our new approach to a video amplifier. The documentation of the

softwave is given in a separate technical report [20].

2. REVIEW OF AN EXISTING FAULT DICTIONARY APPROACH

In order to appreciate the significance of our proposed new approaches, it is neces-

sary first to review what is currently being done in dc fault diagnosis. We shall use the

video amplifier example of [4] as a vehicle to explain all phases of the dc fault diction-

ary approach. We then (in Section 3) point out where the difficulties lie and propose

new techniques for overcoming these difficulties.

The dc fault dictionary approach consists of two distinct stages:

Stage I. Pretest analysis to compile the fault dictionary.

In this stage the analog circuit is simulated by a digital computer program under

nominal as well as all preselected catrastrophic faults. Judiciously chosen dc input vol-

tages are applied. The induced dc voltages at a selected set of test nodes are calcu-

lated. These voltages are then stored in the ATE (automatic test equipment) and con-

stitute the fault dictionary.

Stage 2. Post-test analysis to identify the fault.

In this stage, measurements of test node voltages have been made on the circuit,

and the measured values are compared with those stored in the fault dictionary. First,

a fault detection algorithm is applied to determine whether the circuit is faulty at all.

If the answer is affirmative then the fault is identified by the application of some fault

isolation algorithm (e.g., minimum sum-of-squared errors, as in [4]).

2.1 Pretest Analysis

As an example, consider the video amplifier circuit of [4] whose schematic diagram

is reproduced here as Figure 2.1. The amplifier has 9 transistors (QI through Q9), 7

diodes (DI through D7), 4 zener diodes (DZI through DZ4), 45 resistors (RI through

R45), and 4 inductors (LI through L4). The amplifier is constructed with discrete com-

ponents. There are 43 nodes (excluding the common ground). Not all of these nodes

are accessible. Otherwise the fault diagnosis problem would be trivial [8].

...... .... -. ,,... -.., _______, _______- ______
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If the catastrophic faults of al components, single faults as well as multiple faults
are considered, the number of combinations will be enormous. Thus as the very first
step, the engineer must come up with a reasonable fault list, based on his experience
and the past failure history of the circuit. Strictly for the purpose d! illustration, a
total of 20 faults have been selected in [4], all being associated with semiconductor dev-
ices, as they are more likely to go wrong than passive components. Adopting the
abbreviations B-base, C-collector, E-emitter, O-open, S-short, we have the following
fault list (fault number-fault condition):

I-QIBES; 2-Q2CES, 3-Q2BO, 4-Q3BES, 5-Q3BO, 6-Q4BES 7-Q4BO, 8-Q5BES, 9-
Q5130, 10-Q6BES. 1I-Q6BCS, 12-Q6BO, 13-DZIO, 14-DZIS, 15-DZ20, 16-DZ2S, 17-
DZ30, 18-DZ3S, 19-DZ40, 20-D24S.

The next step is to select test nodes among the accessible nodes. Dicrete-
component circuits have most nodes accessible. Next in line are the printed circuit
boards. Finally, the integrated circuit chips have the least number of nodes accessible
for testing. Even if the accessibility of nodes presents no problem, it is highly impor-
tant to use as few test nodes as possible, in view of the cost of making test node con-

nections.

In the absence of any better guidelines one may initially choose all or most of the
accessible nodes as the test nodes. Later on, after circuit simulations under all fault
conditions have been carried out, a suitable fault isolation algorithm may be executed
to reduce the number of test nodes and yet maintains a satisfactory fault isolation.

In the present video amplifier circuit, 10 test nodes are chosen initially. They are
nodes 2, 5, 8, 11, 16, 18, 26, 27, 33, and 36, again all associated with semiconductor
devices.

In general, the nominal and fault circuits must be simulated under more than one
input combinations in order to achieve adequate separation of faults. Each input com-
bination is also called an input vector. At present, no algorithm is available for the
selection of the input vectors. Trial and error, guided by knowledge of the particular
circuit, seems to be the only avenue at this time. The selection of stimuli is initially
made by the engineer and expanded if detection (separation from the nominal case) and
isolation (separation among fault cases) requirements are not met. In [4), the following
fault detection criterion is used. A fault is considered detectable only if for some input
vector

.[(calculated test node voltage, fault)

-(calculated test node voltage, nominal)12

> 0.5 x (number of test nodes)

where the summation is over all test nodes. This criterion stems from the assumption
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that an average voltage deviation of 0.7 V (a diode drop) at each node is reasonable for

detection. Therefore, for N test nodes, EAV2 > (0.7) 2N - 0.5N.

For the video amplifier of Fig. I, two input vectors have been used. If we let

%IN = (V14, V25, V35, V.12, V21)

then the two chosen input vectors are (in volts):

VINI = (30, 25, 5, -6, 5)

and

,IN2 = (-30, 25, 5, -6, 5)

Note that the last four entries in the input vectors are simply the de power supply vol-
tages for the amplifier. Only the first entry, --L 30 volts, represents the externally

applied de input.

As there are 21 circuit conditions (1 nominal and 20 faulty) and 2 input vectors, a
total of 21 x 2 = 42 circuit simulations must be carried out to determine the 10
selected test node voltages. In (4], the program SYSCAP is used. Of course, one can
use any other suitable CAD programs such as SPICE2[91, ASTAP[10], etc. The data to
be gathered from these simulations will be 21 x 2 x 10 = 420 voltage values. These
values will be processed by the fault isolation algorithm described below to eliminate

the unnecessary test nodes. The voltage values corresponding to the retained test
nodes then constitute the fault dictionary.

2.2 Ambiguity Sets, Fault Isolation, and Fault Dictionary

Before describing the fault isolation algorithm, it is P-"F"sary to introduce the con-
:, pt of an ambiguity set. Consider a hypothetical case of a circuit with 2 test nodes

and 6 faults. Suppose that the use of a CAD program on this circuit yields the follow-
ing results:

NOM FI F2 F3 F4 F5 F6

VI 5.5 9.0 6.8 6.4 6.6 5.1 2.0

, V2 4.0 8.0 5.0 5.2 7.8 7.6 3.0

These voltage values are obtained under the assumption of exact element values. In

reality, the value of any element may vary within some tolerance range. For example,
the resistance of a 5% 1-KO resistor may be anywhere from 950 to 1050 ohms. Even

less certain do we know about the parameter values of semiconductor devices. This,
coupled with unavoidable measurement errors force us to be more cautious in judging
the circuit conditions. In the present hypothetical example, if the measured value of

'I
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VI is 5.4 volts we really cannot be certain whether the circuit is under nominal, or fault

#5 condition. All we can say is that when VI = 5.4 volts, the circuit is under either
nominal or fault #5 condition. Thus in this case, NOM and F5 form what is called an

ambiguity 8et. Following [4], we may reasonably define the voltage of an ambiguity set

to have a range of -0.7 volt about its center value, and t.iat different ambiguity set
voltage ranges do not overlap. When we speak of an ambiguity set, we refer to the cir-

cuit conditions that produce voltages within the same ambiguity set voltage range. In

the present example, test node 1 has 4 ambiguity sets and test node 2 has 3 ambiguity
sets which are listed below.

(node, ambiguity set) circuit voltage

condition range

(1,1) NOM, F5 4.6 - 6.0

(1,2) F2, F3, F4 5.7 - 7.1
(1,3) F1 8.3-9.7
(1,4) F6 1.3- 2.7

(2,1) NOM, F6 2.8- 4.2

(2,2) Fl, F4, F5 7.1 - 8.5
(2,3) F2, F3 4.4- 5.8

An examination of the above table shows that fault F4 cannot be isolated from F2 and

F3 if we use test node I only. Similarly, F4 cannot be isolated from FI and F5 if we

use test node 2 only. However, if both test nodes 1 and 2 are used then F4 can be iso-

lated. This is because that F4 is only fault that occurs simultaneously in ambiguity

sets (1,2) and (2,2). On the other hand faults F2 and F3 cannot be isolated even if
both test nodes are used.

In order to obtain maximum isolation, the ambiguity sets must be manipulated to

determine which faults can be isolated and what nodes will provide the greatest degree

of isolation. In [4], two ground rules are used:

Rule 1. Any ambiguity set which has a single fault within it, uniquely defines that

fault at that test node.

Rule 1'. Ambiguity sets whose intersection (the fault is the only common element in all

sets) or symmetric difference (the fault is the only different element and it is contained

in only one set) result in a single fault also uniquely define the fault. In this case, the

test nodes for each ambiguity set is required.

Consider again the above hypothetical example. F1 and F6 each can be uniquely

defined by measuring voltage VI only, according to Rule 1. NOM (nominal case) and

F5 each can be isolated by measuring both VI and V2, according to Rule 2, as we have



NOM = {amb.set(1,1)} fl (amb.set(2,1)}

= {NOM,FS} l {NOM,F6}

and

F5 = {amb.set(l,1)} f {amb. set(2,2)}

= {NOM,F5} CF {FI,F4,F5}

Fault F4 can be isolated by either Rule 1 or Rule 2, as we have

F4 = {amb set (1,2)) C) {amb. set (2,2))

= {F2,F3,F4} ) {FI,F4,F5}

or

F4 = sym. difference of {amb. set (1,2)) and {amb. set (2,3)}

= sym. difference of {F2, F3, F4} and {F2, F3}

Having described the concept of ambiguity sets and the rules for their manipula-
tions, let us return to the consideration of the video amplifier circuit of Figure 2.1. At
each of ten test nodes and for each of the input vectors, the ambiguity sets are deter-
mined. For node 11, the results are as follows (0 stands for nominal case):
For input V14 - 30 V, two ambiguity sets,

(ll,J)l = {2,6,7,15,10}

(i1,2)l = {0,1,3,4.5,8,9,10,11,12,13,14,16,17,18,20)

For input V14 = -30 V, five ambiguity sets,

(11,1)2 {2}

(11,2)2 = {5}

(11,3)2 = 113)

(11,4)2 = {14}

(11,5)2 lieup = (0,1,3,4,6,7,8,9,10,11,13,15,16,17,18,19,20)

The complete tabulation of the ambiguity sets for all nodes is given as Table 1 in [4].
After applying the two rules described above to these ambiguity sets, it is found

that only 5 test nodes (nodes 11, 8, 2, 5 and 16) are needed for the isolation of 19 out of
the 20 preselected faults. The two faults that can not be uniquely identified are faults
10 and 12. In general, to achieve a higher degree of isolation, we have to use more test

- ,- '.
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nodes, or more input vectors. This is, however, unnecessary in the present case since
faults 10 and 12 are on the same replaceable component, transistor Q6. If either fault
10 or fault 12 has occured then transistor Q6 has to be replaced anyway. Further isola-
tion between faults 10 and 12 is therefore unnecessary.

The Fault Dictionary now consists of the dc nodal voltages at the five test nodes
for two inputs under each of the 21 circuit conditions (1 nominal and 20 fp.zlty cir-

cuits). This represents a total of 210 (5 x 2 x 21) voltage values to be stored in the
fault dictionary on the ATE. A portion of the fault dictionary, corresponding to faults

4, 10, 14 and the nominal circuit is given below.

Fault input V14 VII V8 V5 V2 V16

F4 -30 5.32 5.99 0.09 6.95 0.02
30 0.15 5.99 0.09 6.95 0.03

FlO -30 5.93 0.09 5.93 0.12 3.07
30 0.20 5.97 0.09 6.91 4.22

F14 -30 1.70 0.08 5.92 0.12 3.11
30 0.13 6.00 0.09 6.95 4.03 1 J

NOM -30 .5.90 0.08 5.95 0.12 3.09
30 0.18 5.95 0.09 6.93 4.10

This completes the pretest setting up of the fault dictionary.

2.3 Post-lest Analysis

No-A suppose that a faulty circuit has been tested, and the following measured
data have been obtained:

input V14 V11 V8 V5 V2 V16

-30 5.38 6.45 0.06 6.73 0.10
+ 30 0.15 6.46 0.06 6.77 0.13

We shall illustrate the post-test calculations required to isolate the fault. Let SSD(FJ)
denote the sum of square-deviations corresponding to fault FJ, i.e.,

SSD(FJ) -4 E (measured node voltage - calculated node voltage for fault FJ)2

where the summation is over all test nodes and all input vectors. Then after SSD(FJ)

have been calculated for all faults, the one leading to the smallest value is considered to
be the fault that has occured. For the present case, we have (from the previous tables):

SSD(F4) = [(1.82-5.32)2 + (0.07-5.99)2 + (6.38-0.09)2

+ (0.09-6.95)2 + (2.31-0.02)2]
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+ [(0.11-0.15)2 + (6.46-5.99)2 + (0.07-0.09)2

+ (6.73-6.95)2 + (0.13-o.03)21

= 139.16 + 0.28 t- 139

Similarly, using the data shown in the two previous tables, we find

SSD(F 10) = 35

SSD(F14) = 1.2

SSD(NOM) = 34

If the SSD values for all other faults are also calculated (data not shown in [4]), the
final result is as follows (Table 3 of [4]), third row):

Fault 1 2 314 15 1617 18 9 10
SSD 18 129 189 139 167 120 117 70 74 35

Fault 11 112 13 14115 16 17 18 19 20

SSD 21 35 300 1.2 196 40 143 40 104 36

Since the minimum value of SSD is 1.2, and occurs for FJ = 14, we conclude that the
measured data indicates the occurence of fault 14.

This completes the description of an existing fault dictionary approach [4].

3. PROPOSED NEW APPROACHES

The dc fault dictionary approach [4] described in tho previous section has been

successful for medium size circuits, e.g. the video amplifier circuit in [4]. When larger
circuits are considered, the first difficulty encountered is the enormous amount of pre-
test computation. For every possible hard failure, a dc analysis of the nonlinear circuit
must be performed, using a circuit simulator such as SPICE2 [9], SYSCAP [4], or
ASTAP [10]. Assume that the fault list consists of 200 preselected faults (single or
simultaneous). Then 200 dc analyses must be done. All existing circuit simulators use
Newton iterative procedure [11] (or some of its modified forms) to do the dc analyses.
These 200 analyses will be done separately. There is no way to utilize the result of any
one analysis in another.

Our aim in the pre-test stage is to find a new way of performing dc analysis which

is faster than the use of Newton algorithm, possibly at some loss of the accuracy of cal-
culated node voltages. Furthermore, this new method should have the desired property
that the result of one analysis can be used to expedite the analysis of the next fault

II



-12-

circuit.

In the existing dc fault dictionary approach [41, the post-test analysis consists of
the calculations of many SSD(sum of squared deviations). If there are N test nodes, F

fault conditions, and M input vectors, then after the test of a faulty circuits has been
made, we have to perform

N x M x (F+ 1) multiplications

and

(N x M- 1) x (F+ 1) additions/subtractions

in order to identify the fault. For the video amplifier of Section 2, where N - 5, M =

2, and F = 20, the number of post-test arithmetic operations required to identify the
fault are 210 multiplications and 189 additions/subtractions.

Our aim in the post-test stage is to find a new method such that the identification
of fault requires practically no arithmetic operations. A mere dictionary "look up"
operation should be enough to identify the fault. This requirement is motivated by two
practical considerations. (1) With such a simple post-test procedure, the dc dictionary

approach can be used in the field (on board a ship, for example) by a technician, as all
he has to do is to make measurements and then loop up the fault dictionary. No com-
putation is needed. (2) Hardware can be constructed with a microprocessor chip and
relatively simple decision making circuitry such that when the measurement data are
received, the fault condition of the circuit will be displayed automatically, eliminating
even the human operation of fault dictionary look-up.

To achieve the two aims stated above, we have attacked the problem with tech-
niques quite different from those in [4]. The following is a brief summary of the distinct
features of our new approaches.

(1) Model all nonlinearilies by piecewise linear characteristics [12).

(2) Use switches (instead resistances as in [7] and several other papers) to represent
open circuits and short circuits.

(3) Solve the piecewise linear resistive network containing switches by the use n-
port theory 113] and Lemke's complementary pivot algorithm [14].

(4) Use multi-level logic to reduce the number of test nodes and to generate integer
fault codes for the fault dictionary.

These will now be explained in detail in Sections 4 to 8.

~j
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4. MODELING OF PIECE WISE LINEAR RESISTIVE NETWORKS WITH IDEAL
DIODES

4.1 Piecewise Linear Approximation to a Sr.ooth Curve.

Nonlinear characteristics encountered in de analysis of a circuit are usually associ-
ated with semiconductor devices, and are usually in the form of polynomial, exponen-
tial or some special functions. Some typical examples are:

Junction diode

ID = 18(e~v'D- 1)

Bipolar junction transistor [15, p. 13]

IE  -IES(e 0i-1-) + falcs(ei q-1)

Ic -ics(e'V _l) + OFIE(eiVu-1)

As is well known, a nonlinear curve can be approximated by a piecewise linear
(hereafter abbreviated PWL) curve to any desired accuracy by increasing the number of
straight line segments, and hence the number of break points. Figure 4.1 shows a 5-
segment approximation to the diode exponential I-V curve. In many applications,
including the present case of dc fault analysis, a 3-segment, or even a 2-segment
approximation to the diode I-V curve is adequate.

Of course nonlinear characteristics need not occur in 2-terminal elements only.
The bipolar transister whose model equations are given above is an example. However,
it has been clearly demonstrated in [12] that models for nonlinear circuits can be con-
structed in such a way that all nonlinearities are associated with 2-terminal nonlinear
resistors. It might be surprising to know that even nonlinear capacitors and inductors
can be modeled with nonlinear resistors (plus linear elements, of course). In this
research, we assume that all nonlinearities are associated with 2-terminal resistors.

Before the days of digital computers, the PWL approach was considered a very
powerful means for understanding the behavior of electronic circuits, and for analyzing
the same manually. In fact, there were undergraduate textbooks in electronic circuits
that used exclusively the PWL approach [12, 16], despite its obvious drawback of being
less accurate.

With the advent of high speed digital computers, and with the demand for more
accurate analysis result, the PWL approach has given in to the Newton iterative
approach 113], because the exact nonlinear characteristics are used in the latter.
Because of the repeated evaluation of the Jacobian matrix, Newton procedure is in gen-
eral more time-consuming than the PWI, approach. Here we see another example of
the trade-off between speed and accuracy in computer-aided circuit analysis.
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Figure 41 A 5-segment approximation to a diode I-V curve.
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In our present research of fault diagnosis, we have a situation where the demand of

accuracy is less severe than the usual circuit simulation. This is because of the safety
margins provided by the ambiguity sets. To illustrate this point, consider the video
amplifier of Section 2. Under fault #5, the exact voltage of node I is VI = 5.1, and F5
belongs to ambiguity set (1,1) which has a range from 4.6 to 6.0 volts. Now suppose
that due to model inaccuracies or the limited accuracy of the computer, the calculated

value of VI becomes 5.5 volts (8% relative error). No harm is donel F5 still belongs to
ambiguity set (1,1), and the fault isolation process goes on just as before. It is impor-
tant, however, to avoid very large errors that might change the constituents of the

ambiguity sets.

In passing it should be pointed out that although statistical variations of element
values have not been considered in our present research, the use of ambiguity sets does
provide considerable safeguard against erroneous fault identification due to the varia-
tion of element values within their tolerance margins.

4.2 A Simple PWL Resistive Network and ft8 Solution

Once the characteristic of all nonlinear resistors have been approximated by PWL
segments, they can be modeled with ideal diodes, de independent voltage sources and
current sources. An ideal diode here is defined as a 2-terminal element that behaves as
an open circuit when reverse biased and as a short circuit when forward biased. Figure
4.2 shows the modeling of four simple PWL I-V curves using ideal diodes 1161. The
technique for modeling the most general PWL I-V curves (negative slope segments
allowed) may be found in (121. Usually, but not always, the number of break joints in
the I-V curve is equal to the number of ideal diodes in the circuit model.

A nonlinear network without energy storage elements, and with :-I nonlinearities
in the form of piecewise linear curve is called a PWL r.-istive network. From the
above discussions, we see that any PWL resistive network can be modeled with linear

resistors, linear controlled source and ideal diodes. We shall demonstrate the formation
of a PWL resistive network and its solution with a simple example.

Fig. 4.3(a) shows a single stage transistor amplifier. The input and output charac-
teristics of the transistor are assumed to be PWL and are given in Fig. 4.3(b). From
these characteristics, we can easily construct the PWL model for the transistor [12,
Chapter 11). The result is shown in Fig. 4.3(c).

Now suppose that we wish to find the dc operating point of the amplifier. In dc
steady state, capacitances behaves as open circuits. After removing the two capaci-

tances in Fig. 4.3(a), and replacing the transistor by its PWL model of Fig. 4.3(c), we
obtain a PWL resistive network as shown in Fig. 4.3(d).

Many methods are available for solving the PWL network of Fig. 4.3(d). To be
consistent with our later development we shall use the n-port approach [13, Chapter 6].
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Suppose that we extract the two ideal diodes to form a 2-port. The elements inside
this 2-port are dc independent sources, linear resistors, and controlled sources. By a
straightforward circuit analysis, we find the following constraint equation on the port
voltages and currents: iVd, 15 (4.1)

r1 56 -51 'dl +-71S= -Q5 10 'd2 +  (4.1)

where Id denotes the diode forward current, and Vd denotes the diode reverse bias vol-
tage, both being nonnegative. The two ideal diodes may be viewed as the terminations
for the two ports. Therefore, the ideal diode characteristics form additional constraints
on the port voltages and currents as given below

[Vd,1 [Idli
d2 0, [Id2j > 0 (4.2)

Vdl' dl 0 , Vd2 ld2 = 0 (4.3)

The problem now is to find (Vd, Vd2, 'dl, d2) that will satisfy equations (4.1) (4.2) and
(4.3), which is a special case of the so-called complementary problem to be discussed in
Section 5.

For the present simple case, we can use the exhaustive search method. Note that
(4.2) and (4.3) together imply that at least one element in any complementary fair
(Vdi, 'dj), j = 1,2, must be zero. Thus there are only 4 cases to be considered:

Case 1. d =0, ld2 0

Case 2. Idi =0, Vd2 0

Case 3. Vdl =0, Id2 = 0

Case 4. Vdl = 0, Vd2 0

For Case 1, we let ]dl = 0 and ]d2 = 0 in Eq. (4.1). This immediately leads to
VdI = -7, Vd2 = 15. The negative value of Vdl violates condition (4.2). Therefore Case
I does not yield a solution to the problem.

Next consider Case 2, Idl = 0, Vd2 - 0. Following the procedure in Case 1, we will
first express Vd, and Id2 in terms of 1d, and Vd2" In network sense, this amounts to
finding another representation of the 2-port. The goal can be achieved by simple
matrix manipulations. In Eq. (4.1), we consider Vdl and id2 as unknowns and solve for
them. The result is:

dl [ 8.5 -(0.5 l4d) 1 .5144)
-~ 2l _9 d .5l

'd2 j .5 -0.1 V 2 + (4.4
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Setting Idl = 0, Vd2 = 0 in Eq. (4.4) we immediately obtain Vdl = 0.5, 'd2 = -1.5 < 0.
Since Id2 is negative, Case 2 does not yield a solution either.

Next consider Case 3, Vdi = 0, Id2 = 0. Following the similar procedure, we first
obtain

1= [- 0.018 0.08j o dl + 3.1251 (4.l5)

_I2 -. 69 1.518 'd2 3 (4.2)

Setting Vdl 0, Id2 = 0, we immediately obtain

]Vd I l = .15
d21 .31251

Since all constraints have been met, we have one valid solution:
Vdl = 0, Idl = 0.125, Vd2 3.125, Id2 = 0. From these results, the operating point of
the transistor is easily found to be:

VBE = 0.625V IB = 0.125 mA

VCE = 3.125V Ic = 1.125 mA

In a simple circuit such as the present one, we know that the circuit has a unique
solution. Since we have found one solution in Case 3, there is no need to proceed to
Case 4. However, in general, when the possibility of multiple solutions exists we have
to consider all possible cases.

In the previous example of 2 ideal diodes, we obtain a solution in Case 3. But we

can not expect to have such luck all the time. The successful case could have been
Case 4. In general, if there are n ideal diodes, we might have to iz. estigate 2" cases
before a solution is found. Obviously then, the exhaustive search method is practical

only for PWL networks having very few ideal diodes. Efficient solution of PWL net-
works containing many ideal diodes (or equivalently, many straight line segments in the
PWL characteristics) has been a topic of continued research interest (see [13, Chapter 7
and the references on page 323J. In the next section, we shall describe one method, the
complementary pivot algorithm, which is particularly suited to our present goal of fault
diagnosis.
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5. THE COMPLEMENTARY PROBLEM AND METHODS OF SOLUTION

5.1 The Complementary Problem

In the previous section we have seen an example of the complementary problem of
order 2. The general case of an nth order complementary problem [14) is to find vec-
tors w and z such that

W=Mu+ q (.a

w > O,a > 0 (5.1b)

wtX = 0 (5.1c)

where the matrix M is a square matrix of order n, and w, a, q are all n-vectors. M
and q are given, while w and z are unknowns to be found. For example, the following
is a complementary problem of order 3.

W -2 -14 4 i [4
W2  = -4 2 z2 + (5.2a)
W2 4 -2 1

w >0, 3 >0 (5.2b)

wz -" WlZ ! + W2Z2 + W0 3 - 0 (5.2c)

If q > 0, then obviously one solution to the complementary problem (5.1) is
w = q and x = 0. But this may not be the only solution. In fact, a complementary
problem may have no solution, a unique solution, several solutions, or infinitely many
solutions. To see these possibilities, we need only consider the following first order
complementary problem.

Example 5.1

w=mz+ q,

w>Oz>O, wz=O

Case . w= z + 1.

There is a unique solution: w = 1, z = 0
Case 2. w =-z + 1.

There are two solutions: w = 1, z = 0 and w = 0, z = 1.
Case 3. w = -z - i. There is no solution.
Case 4. w = 0z + 0. There are infinitely many solutions: w = 0, 0 < z < oo.

To find all solutions to a complementary problem is known to be extremely time-
consuming. In many practical applications, we either know that there can be at most
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one solution, or are content with obtaining any one solution. In such case, the comple-

mentary pivot method, to be described in Section 5.3, has been found very powerful.
Before discussing the complementary pivot method, it is very instructive to consider

another method called the exhaustive search method, which has a clear relationship
with n-port network theory.

5.2 The Eohaustive Search Method

The exhaustive search method essentially reduces the original complementary
problem to a number of problems each of which amounts to finding n unknowns from n

linear simultaneous equations. To see how this is achieved let us review the constraints
(5.1b) and (5.1c). These two constraints together imply that in cvery pair of unknowns
(wi, zi), called a complementary pair, at least one element is zero (or equivalently,
wiz i = 0). Since there are n complementary pairs, any solution to (5.1) must have n
unknowns set to zero (some other unknowns may be found to be zero subsequently).
The n unknowns to be set to zero may be chosen arbitrarily, the only restriction being
that they should not contain both elements of a complementary pair. After setting n
unknowns in Eq. (5.1a) to zero, we obtain a set of n equations in the remaining n unk-
nowns, which may then be solved by any of the well-known linear equation solution
methods. If all of the answers are nonnegative, then constraints (5.2b) have been met,
and a solution to the complementary problem has been found. Otherwise, set a
different group n unknowns to zero and repeat the procedure, until a correct group has
been selected. Now we may view Eq. (5.1a) as a constraint equation for a linear resis-
tive n-port containing dc independent sources as follows [13, Chapter 6]: z and w are
the independent and dependent port variables, respectively, and q is the forcing vector

(due to independent sources inside the n-port). Furthermore, if zi is tke current into
(voltage across) the ith port, then w1 is the voltage across (current into) the ith port.
With such an interpretation of Eq. (5.1a), it is seen that solving a complementary prob-
lem by the exhaustive search method is the same as finding a port-classification for an
n-port such that all elements in the forcing v~ctor of the hybrid equation [13] are non-
negative.

To facilitate the solution process, it is more convenient to rewrite Eq. (5.1a) as

[1-I ]=q (5.3)

Further simplification in bookkeeping results if we display the information contained in

(5.3) in a tableau form as follows
W,...we z...zI 1 M qJ (5.4)
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Note that in the tableau (5.4) we have used the unknowns w1,...wn, z1,...z n to label the
columns with which they are associated. In this initial tableau, and in all later
modified tableaus, we always arrange the columns in such a manner that the second
block contains those unknowns to be set to zero while the first block contains those

unknowns to be solved for.

To illustrate the exhaustive search procedure, let us consider the complementary
problem given by (5.2). The tableau corresponding to Eq. (5.2a) is given below.

w1 W2 W3  Zl Z2 Z3  q

1 0 0 2 14 -4 :-4
0 1 0 4 4 -2 1-6 (5.5)

0 0 1 -4 -4 2 110J

Setting the unknowns in the second block to zero, i.e., z, = z2 = z3 = 0, we immedi-
ately obtain a solution to (5.2a): w, = -4, w2 = -6, w3 = 10. Since the nonnegativity

constraint (5.2b) is violated, this solution to (5.2b) is not a solution to the complemen-
tary problem (5.2).

The exhaustive search method now proceeds with a different choice of unknowns
to be set to zero. Suppose that z, and w, columns are switched in the tableau. We
obtain the following new tableau.

ZI W2 W3 W1 Z2 Z3  q
2 0 0 1 14 -4 ; -4
4 1 0 0 4 -2 '-6 (5.6)

-40 1 0 -4 2 110

We now set w1 , z2 z3) the zero and solve for (z1, w2, w3 ). This amounts to "pivoting"

on the (1,1) element (By "pivoting" on a nonzero element aij of a matrix A. we mean

using elementary row operations to reduce the jth column to an identity column having
ij= 1). The aim of pivoting is to reduce the first block to an identity matrix. The

result is

ZI W2 W3  W1  Z2  Z3  q
1 0 0 ;0.5 7 -2 -2 (5.7)

0 1 0 '-2 -24 6 '2
0 0 1 2 24 -6 2

Because the q-vector (rightmost columns), contain a negative element, setting
(wI, z2, z3) to zero does not yield a solution to (5.2) either. We must continue the tri-

als.



-23 -

Suppose that in the initial tableau (5.5), w3 and z3 are switched. We have

W1 W2 Z3  ZI Z2 W3  q
1 0 -4 2 14 0 -4 (5.8)
o 1 -2 4 4 0'-6I Io 0 2 ,-4 -4 1 il10

Pivoting on (3,3) element to reduce the first block to an identity matrix we obtain

W1 W2 Z3  Z1 Z2 W3 , q

1 0 0 -6 -6 2 16
o o o-1- 4 2(5.9)

0 o 1 .- 2 -2 0.51 5

Since in the above tableau q _> 0, we have obtain a solution to (5.2), namely
Z= = Z2 = W3 =-0, w 1 = 16, w 2 = 4, z3 = 5.

The number of arithmetic operations needed in going from (5.6) to (5.7), or from
(5.8) to (5.9) can be easily determined to be

12 multiplications
8 additions

For the general case of an nth order complementary problem the corresponding
numbers are

n(n+ 1) multiplications

(n2-1) additions.

Since for each complementary pair (wi, zi), either wi or zi can be included in the second
block, there and a total of 2n ways of selecting the unknowns for the second block.
These 2n combinations can be arranged sequentially such that each one differs from its
previous one in only one variable. Therefore, to find all possible solutions, or just to
find one solution, we have to perform, in the worst case, 2n matrix reductions each

requiring n(n+ 1) multiplications and (n2-1) additions. This exponential growth of
operation counts clearly restricts the use of the exhaustive search method to very small
size problems (say n < 3 for manual solution, and n < 20 for computer solution). In
our present research in fault diagnosis, we can easily have n > 100 for realistic circuits.
Clearly a much more efficient method of solving the complementary problem must be
sought.

It has been shown by those in the operations research area that many optimization
problems such as linear programs and convex quadratic programs can be formulated as
a complementary problem [141. Several algorithms have been proposed for solving the
complementary problem. In this research project, we have chosen Lemke's



-24-

complementary pivot algorithm for solving the complementary problem, because the
algorithm has been found superior to other exciting methods {14, p. 539]. A brief
description of the complementary pivot algorithm follows.

5.3 Lemke's Complementary Pivot Method

In the exhaustive search method described above. We choose one combination of
n variables, set them to zero, and solve for the remaining n variables. If the answers
are not all nonnegative, then we choose another combination of n variables and repeat
the process. There is no restriction, or guideline as to which combination of n variables
should be examined next. The Lemke's complementary pivot algorithm is also a
sequential search method but with a definite sequence of combinations of variables to
be examined. The following is a brief description of the algorithm. For a more
detailed discussion of this method, see [14, Chapter 11].

Lemke proposed to solve (5.1) by the introduction of an artificial variable z0. Con-

w = Mz + ez0 + q (5.10a)

w > 0, a > 0, zO 2 0 (5.l0b)

wtz = 0 (5.10c)

where e is an n-vector [I,...,lJ t. Observe that any solution to (5.10) with z0 > 0 is not

a solution to (5.1), and is called an almost complemenlary solution to (5.1). However a
solution to (5.10) with z0 = 0 is also a solution to (5.1). In essence, Lemke's algorithm

is a sequential search of the solutions to (5.0), until one solution with z 0 is found,

which is then a solution to the complementary problem (5.1)

To facilitate the solution process, we first rewrite (5.10a) as

[1 -M -e0] -- q (5.11)

Further simplification is bookkeeping results if we display the information con-
tained in (5.11) in a tableau form as follows:

W'"Wn .. 1 *Z Zo

-1

M (5.12)
1 -M • q

I ~ -1:
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Note that in the above tableau we have used the unknowns wl, .. . ,W,Z,, z. ,z, and

z0 to label the columns with which they are associated with. In this initial tableau, and

in all later modified tableaus obtained by switching columns, we will maintain the fol-
lowing two properties for the first block:

(1) The nxn matrix is nonsingular.

(2) For each complementary pair (w, zi), at most one element is included in
this block.

In the complementary problem literature, the variable in the first block are called

basic variables, whereas the variables in the second block are called nonbasic variables.
Any n basic variables constitute a basis. Nonbasic variables are to be set to zero, and
basic variables are found from the resulting simultaneous equations.

As mentioned earlier, the case q >_ 0 in (5.1) has an obvious solution
z = 0, w = q. Therefore assume in (5.10) some elements of q are negative. Let qj be

the most negative element in q. Switching columns z0 with wi, one obtains (illustrated

for i = 2)

w! Z0 ... W, ZI ... Zn w i
I !

1 -1 0 1-mnn -m. 1 0 q,

0 0 ,-m 21 -mn 2 1 1 qi
• -I . ! . • I  .(5.13)

* . . I * * * I •

0 -1 1 i-mnl -mnn 0 1 In

We shall now set the second block variables to zero, and solve for the first block vari-
ables. This amounts to applying elementary row operations to (5.13) to reduce the first

block to an identity matrix. Observe that the first block of (5.13), (and any later

modified tableau) differs from an identity matrix in at most one column, the ith column

in the present case. Therefore we need only pivot on the (i,i) element (shown circled in
the tableau) and obtain the following new tableau:

w i g0---.Wn ZI ... ZnW i

1 0 0 X XX ;qI

0 1 0 X XX 1i6
S0 (5.14)

0 0 1 X XX i

where the entries in the second block (indicated by X) may be positive, negative, or

zero. However, the entries in the third block (the new forcing vector 1) are all
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nonnegative. This is because we have chosen qj to be the most negative element of q,
which leads to

S -q> 0

-qj + qj > 0 for all j 9 i

From the tableau (5.14), we immediately obtain a solution to (5.10) by setting the
second block variables to zero, and equating the first block variables with the elements

of q. Since

Zo = 4 = -qj > 0

this solution of (5.10) is not yet a solution to (5.1), the given complementary problem.

As in the exhaustive search method, we shall now switch one column in the second

block with one column in the first block. Or, in other words, we shall choose one vari-

able to enter the basis, and another variable to leave the basis. The interchange of

columns should be such that the new tableau readily leads to another solution of (5.10).
This goal can be achieved by enforcing the following two rules:

Rule 1. The variable selected from the second block (nonbasic variables) for inter-
change is the complement of the variable which has entered the second block most
recently. Suppose that the selected column is the kth.

Rule 2. The variable selected from the first block (basic variables) is determined
by the "minimum ratio test" as follows:

Calculate j/lik for all thik > 0. Suppose the minimum value of this ratio occurs
when i = j, i.e.

miny7 for all i, s.t.thik >O0
* rnjk I mlk

Then the jth column in the first block is selected for interchange.

After two columns have been switched, we apply elementary row operations to the

new tableau and reduce the first block to an identity matrix, with its accompanying

new second block and new forcing vector. Rule 2 guarantees that all elements of the

new forcing vector will remain nonnegative, while Rule 1 guarantees that no comple-

mentary pair (wi, zi) appear in the first block. Then another solution to (5.10) can be

obtained immediately by setting the second block variables to zero, and equating the

first block (now an identity matrix) column variables to the elements of the latest forc-
ing vector. At this stage, if the auxiliary variable z0 is not included among the first

block (basic variables), then a solution to the complementary problem (5.1) has been

obtained. Otherwise, continue the column interchange process according to Rules 1
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and 2.

Note 1. In carrying out Rule 2, if all elements in the kth column are nonpositive,
then Lemke's algorithm terminates. The termination indicates one of two possibilities

[171: (1) The given problem (5.1) has no olution. (2) The given problem (5.1) has a
solution, but Lemke's algorithm fails to find a solution with the given starting basis.
Very often, by starting with a new basis (i.e., an alternative characterization of (5.1)
obtained by interchanging one pair of complementary variable wi and zi) ) a solution to

. (5.1) may be found.

Note 2. In carrying out Rule 2, if the minimum ratio occurs for more than one
value of i, then we say a tie has occured. Reference [17] describes a method for break-
ing the tie and making the choice unique.

The above solution procedure for (5.1) is called the complementary pivot method.
It is best illustrated with an example.

Example 5.2. Solve the complementary problem (5.2) by the complementary pivot
method.

Solution: The initial tableau is

w1 W2 w3  ZI Z2 Z3 Z0  q

1 0 0.2 14 -4-1 -4! I

0 1 0 4 4 -2 -1 -6 (5.15)

0 0 1 -4 -4 2 -1 10

Since the most negative element in q is -6 which occurs in the 2nd row, we interchange
the 2nd column, namely w2 with z0, the result is:

W1 Zo W3  ZI Z2 Z3 W2  ql
1 -1 0 2 14 -4 0 1-4

0-1 0' 4 4-2 1 ,-6 (5.16)
0 -1 -1 ,-4 -4 2 0 1l10

Pivotong in (2, 2) element to reduce the first block to an identity matrix, we obtain a

new tableau

Wi ZO W3  Z1 Z2 Z3 W 2  l
1 0 0 '-2 10-2-1 12

0 1 0 -4 -4 2 -1 6(.7)
0 0 1 '-8 -8 4 -1 :16j

Note that in (5.17) (I > 0. One almost complementary solution to (5.2) is obviously
z z z w ,= 2, zo  w 16. Sincezo 0 0, thisiss not asolution to

(5.2) yet.

* *
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According to Rule 1, the column in the second block selected for interchange is z2

.(since w2 has entered this block most recently). There is one ratio to be considered,

namely 2/10, which is naturally also the minimum ratio. Since the element 10 occurs
in the first row, according Rule 2, the first column, namely w, is chosen for inter-

change. We have, after interchanging z2 and w, columns, and reducing the first block

to an identity matrix by elementary row operations, the following new tableau:

z2 Zo w3  zI WI Z3  W2  ]

1 0 0O: 2 0.1 -0.2 -. 1 0O.2
0 1 0 '-4.8 0.4 1.2 -1.4 '6.8 (5.!8)
0 0 1 --9.6 0.8 2.4 -1.8 !17.6j

Note that - 0 in (5.18). Since z0 is still within the first block, we continue to apply

Rules I and 2. Since w, has entered the 2nd block most recently, then z, is selected for

interchange. But there is no positive element in the column zi, the algorithm ter-

minates without giving a solution to (5.1).

As mentioned in Note I above, we should in this case try a new starting basis. Eq.
(5.2a) may be expressed by the following equivalent system of equations:

ZI -05-7 21 Wi -21
W2 2 24-6 z2 + 2 (5.19)

W3 -24 6 Z3

The initial tableau representing (5.19) is

Z1 W2 W3 WI Z2  Z3 Z0  q

1 0 0 0.5 7 -2 -1 :-2 (5.20)

0 1 0 -2 -24 6 -1 '2

0 0 1 2 24 -6 -1 2

Since the most negative element in q is -2 and occurs in the first row, column z0 is to

be interchanged with column zj. The result is

Z0 W2 W3 W I Z2  Z3 zi q

-1 0 0 40.5 7 -2 1 '-2

-1 1 0 '-2 -24 6 0:2 (5.1)
-1 0 1 1 2 24 -6 0 ,2

Pivoting on (1, 1) element to reduce the first block to an identity matrix, we obtain

Z 0 W 2 W 3  WI Z2  Z3 Zi q

', (5.22)
1 0 '-2.5 -31 8 -14
0 1 1 1.5 17 -4 -114
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This tableau indicates an obvious almost complementary solution to (5.2) namely
W z2 -z 3 - , 0  2, w 2 - 4, w 3 - 4. Since zo 0  0, this is not a solution to
(5.2) yet.

Since z, has entered the second block most recently, according to Rule 1, we select

eolumn w, for interchange. The minimum ratio is 4/1.5. Since 1.5 occurs in the third
row, according to Rule 2, we select the third column, namely w3 for interchange. After
interehanging columns w3 and wl, and reducing the first block to an identity matrix by
row operations, we obtain

Zo w2 w1  W3  Z2  Z3  Z I q
1 0 0 1'1/3 4/3 2/3 -4/3 110/3 (.3
0 1 0 5/3 8/3 4/3 -8/3 32/3 (5.23)

S0 1 ,2/3 34/3-8/3 -2/3 p8/3

Since z0 is still among the basic variables, we continue the column interchange process,
Rule I now dictates column z3 be selected for interchange, since w3 has entered the
second block most recently. The minimum ratio among

10 2
3 3

and

32 4
3 3

is 5. Since the element 2/3 occurs in the first row, Rule 2 dictates that the first
column, namely z0 be selected for interchange. After interchanging columns z3 and z0 ,
and reducing the first block to an identity matrix, we obtain

Z3 W2 W1  W3  Z2  z0 Zi q
1 0 0 10.5-2.0 1.5 -2 15
0 1 0 1 0 -2 0 4 (5.24)
00 1 2 6 4 -6116

In this tableau, the artificial variable z0 is not among the basic variables, and the forc-

ing vector has all nonnegative elements. Therefore we have obtained one solution to
the given complementary problem (5.2), namely

A3 = z 2 
= zI = 0 (z0 

= 0)

Z3 = 5, w2 = 4, w, = 16

The solution, of course, agrees with that obtained in Sec. 5.2 by the exhaustive search
method.
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6. PRETEST DC ANALYSIS USING COMPLEMENTARY PIVOT METHOD

As mentioned in Section 2, the dc fault dictionary approach consists of two dis-
tinct stages: the pretest analysis and the post-test analysis. In the pretest analysis
stage, the basic problem is the determination of dc node voltages under various fault
conditions and dc input stimuli. Usually this is done with the aid of some circuit simu-
lation program, such as SPICE2 [9], SYSCAP [4], ASTAP [10], etc.

We shall now present a new approach to the pretest analysis, making use the tech-
niques described in Section 4 and 5 as well as the multiport formulation algorithms [13,
Chapter 61. We assume that the test nodes, the input stimuli, and the list of catas-
trophic failure are given. Our only concern in this section is the rapid determination of
test node voltages under various circuit condition.

6.1 The Use of Switches

By catastrophic failures we refer to open circuits and short circuits. One method
to represent these two conditions is by way of the element value. Suppose that a resis-
tance Rj has a nominal value of 1000 ohms. Then Ri = oo indicates an open circuit
and Rj = 0 indicates a short circuit.

In our new approach, however, we use switches to represent open circuits and
short circuits. Refer to Figure 6.1. The switch S, is normally closed (N.C.). Opening
S, signifies that R, becomes ani open circuit. The switch S2 is normally open (N.O.).
Closing S2 signifies that R2 becomes a short circuit. A fixed change in any parameter
value can also be modeled by a switch. For example, in Fig. 6.1(c), S3 is N.O. and R3

has a nominal value of 1000 fl. Closing of S3 means that the value of R3 is changed
from 1000 to 800 fl. Since these are not physical switches, but merely mathematical
models representing fault conditions, we shall call them "fault switches" to distinguish
from real switches.

6.2 Formulation of Multiport Constraint Equation

With dc stimuli, with all nonlinearities approximated by piecewise linear curves,
and with hard failures represented by switches, the networks under consideration can
be modeled with linear resistors, controlled sources, dc independent sources, switches,
and ideal diodes. Let there be t test nodes whose voltages are to be calculated. It is
convenient to view these voltages vt as those associated with t zero-valued independent
current sources (it =_ 0). Let there be d ideal diodes, m fault switches. Extract these
elements to form a (t+ n+ d)-port N as shown in Fig. 6.2, with appropriate notation
for the voltages and currents.

Using the technique described in [13], we can obtain a set of (t+ m+ d) indepen-
dent constraint equations in 2(t+ m+ d) port variables for the multiport. Before
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stating this equation, it is necessary to introduce additional notation. For the m fault
switches, there are 2m combinations of switch conditions only one of which represents
the nominal circuit while the others represent faults (single as well as multiple faults).

For any switch j, either ij = 0 or vi = 0. Therefose, under any particular switch con-
dition, m variables out of (vj) will be identically zero. We may therefore partition v
and I as follows (subscripts NO stands for "normally open" and NC for "normally
closed").

V1 1V'NC 0 ' N C

for normal circuit. For the circuit under normal condition, the hybrid equation for the
multiport then expresses (VNO,|NC,Vt,Vd) in terms of (|NO,VNC,'t,d) in the following
form:

I rows r 1 0 0 C1 4  C1 5  C1 6 1
t rows 10 1 0 C2 4  C25 C 26

d rows 0 0 1 C 34  C3. C36

x(VNO INC) Vt Id('NO VNC) VA = I1 f2 f1l (.1)

where the right band side constant vector is due to the dc independent sources inside

the multiport.

6.3 Calculation of Test Node Voltages

Two different cases of using Eq. (6.1) will now be considered.

(1) Analysis of the nominal circuit. Since INO 0, VNC 0, It  0, the
corresponding columns in Eq. (6.1) may be discarded. Since the variables (VNO, INC)
are not needed for the fault dictionary, the first row may also be discarded. The equa-
tion then simplifies to

10C,~ : i J = i (6.2)

Vd

From Eq. (6.2), one may write the following two equations

Vt = -C2sVd + f2 (6.3)

and

m -A
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|d = -C36Vd + r3 (6.4)

Eq. (6.4) together with the ideal diode constraints Vd >0, Id 0> , V'|d = 0 form a
complementary problem which may be solved by the use of Lemke's complementary
pivot algorithm. Afterijd has been found, we calculate the test node voltage vector Y
by the use of Eq. (6.3).

(2) Analysis of fault circuits

Some normally-open switches may now be closed, and some normally-closed
switches may now be open. Let x denote the voltages of the closed switches, and the
currents of the open switches of S. Let y denote the complementary variables of x (i.e.,

if x i is vj, then yj is ij, and vice versa). Then obviously x = 0. Equation (6.1) may be
rewritten with x taking the place of (|NO,VNC), and y taking the place of (VNO,INC).

This of course calls for some interchanges between the columns of (INO,VNC) and the
corresponding columns of (VNO,INC). Such operations, however, require only a routine
bookkeeping. No additional information other than Eq. (6.1) is needed. The new equa-
tion will be of the following form;

ID 1 1 0 0 D 14  C15 C16
D21  1 0 D24  C25 C2
D3 1  0 1 D34  C35  C35

X[Y vt Id X it vd]t = Ifr f2 f 3 t (6.5)

Since x 0, It- 0, the corresponding columns in Eq. (6.5) may be discarded. This

leads to the following simplified equation:

y
,D10 0 C16 l v f
D21 1 0 C26 r (6.6)'d 2
D3, 0 1 C38 f3

Except for pathological circuits, the square submatrix D11 in nonsingular. Pivoting on
D11 , we obtain from Eq. (6.6):

Vt (-C 26 + D 2IDl'j'C1)Vd + (f2 - D2 1D1
1f) (6.7)

Id (-C36 + D3 Dj- C 8 )Vd + (f3 - D 31D11-f1 ) (6.8)

Eq. (6.8) together with the ideal diode constraints Vd > 0, id _ 0, Vd| d = 0 form a
complementary problem which may be solved by Lemke's complementary pivot algo-
rithm. After id has been found, v, is calculated from Eq. (6.7).
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Remarks:

(1) The data base required for the compilation of the fault dictionary is the fol-

lowing matrix of (m+ d+ t)x(m+ d+ 1).

rows rC5 f1

t rows C24 C26  f2  .
d rows C34 C36 f3

m col. d col. I col.

A very comprehensive list of hard failures may be considered initially to set up the data

base given by (6.0). Later on, if only a subset of the faults are deemed likely, then only

a portion of (6.9) needs to be considered.

(2) In actual computer implementation, Eqs. (6.7) and (6.8) will be derived from

Eq. (6.6) by row echelon reduction, instead of finding Dill explicitly.

(3) When the fault circuits are arranged in a sequence such that two successive

fault circuits differ by just one switch condition, then the solution of the second circuit

can be obtained quite easily from the first one. The total time spent in pretest analysis

is therefore considerably less than that required by the use of a circuit simulator.

6.4 A Simple Example

A numerical example will now be given to illustrate the procedures and notation.

The circuit is deliberately chosen to be simple so that all steps can be verified without
the aid of a digital computer.

Figure 6.3(a) shows a circuit in the normal operating condition. Suppose that the

faults consist of R, shorted (FI), R1 open (F 2), R2 open (F3), and R 2 changing from 1 0

to 0.5 0 (F 4).

The first step is to model these faults with switches SS2,Sl and $2 as shown in

Fig. 6.3(b). Under the normal condition, we have Sj,S l open, and $S 2 closed. It is

desired to determine the test node voltage v, corresponding to each of these faults.

The 4 fault switches, 2 ideal diodes, and I test node-pair are extracted to form a

7-port. A straightforward circuit analysis leads to the following equation corresponding

Eq. (6.1). (Note that m = 4, t = 1, and d = 2. Voltage and current notations are

shown in Fig. 6.3(b)):
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-0.35 0.3 0.2 0.1 -0.2 0.1 -0.2
0.3 0.6 0.A 0.2 .t, 0.2 -0.4

-0.2 -0.4 0.4 -0.8 -0.4 -0.8 -0.4

17
-0.1 -0.2 -0.8 -0.4 -0.2 -0.4 -0.2

-0.2 -0.4 0.4 0.2 -0.4 0.2 -0.4
-0.1 -0.2 -0.8 -0.4 -0.2 -0.4 -0.2

0.2 0.4 -0.4 -0.2 0.4 -0.2 -0.6

XlVI 12 V1 12 Vt idl id2 11 V2 i V21t Vdl Vd2 t  (6.10)

= [-1.2,-2.4,-0.4,-0.2,0.61-0.2,-2.6] t

For the fault FI, we have (SI,S 2,S2) closed, and §1 open. The equation correspond-
ing to (6.6) is

!I

0.4 0 0 0 0 -0.8 -0.4 i2 -0.4

-0.8 1 0 0 0 -0.4 -0.2 v, -0.2

0.4 0 1 0 0 0.2 -0.4 idl - 0.6 (6.11)
-0.8 0 0 1 0 -0.4 -0.2 id2 -0.2

-0.4 0 0 0 1 -0.2 -0.7 -2.6
VdI

Vd2

Observe that first column in (6.11) is obtained from column 10 for il in Eq. (6.10). Ele-
mentary row operations are now applied to Eq. (6.11) to reduce it to Eq. (6.12).

ii

10000 -0.2 -0.1 2 -1

01000 -2 -1 v, -1
00100 1 0 idl = 1 (6.12)
00010 -2 -1 id2 -1
00001 -1 -1 -3

VdI

Vd2

From (6.12), we obtain the following equation corresponding to Eq. (6.8)

|S iVdsJ
~~dIJ -~ 1 + i~J(6.13)
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This equation together with Id ! 0, Vd ? 0, ~'id = 0 form the complementary prob-

lem. Solution by Lemke's complementary pivot algorithm gives idl = 2, VdI = 0,

id2 = 0, and Vd2 = 3.

The test node voltage vt, given by Eq. (6.7), is obtained from Eq. (6.12)

Vt= VdI+ 1 -- 0 + 1= I

The values of v, for other faults are determined in like manner.
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7. FA UL T ISOLA TION A ND REDUCTION OF TEST NODES
After we have calculated the dc voltages of all test nodes, under all fault condi-

tions and input stimuli, our next task is to determine whether each fault can be
uniquely identified or not, given a set of measured test-node voltages. This process is
usually called fault isolation. In Section 2.2, we described the concept of ambiguity set,
and two rules (as used in 14]) to obtain maximum isolation and to reduce the number of
test nodes. We shall continue to use the ambiguity set concept as defined in [4]. But
our method for manipulating the ambiguity sets is quite different from and more sys-
tematic than the two rules used in [4]. Instead of describing our method in general
terms, one shall illustrate it with a specific (although hypothetical) example.

7.1 Construction of the Table of Ambiguity Sets

Suppose that for a given circuit the preselected fault list consists of 8 faults desig-
nated Fl through F8. The nominal circuit condition is designated FO or NOM. One
input vector and 4 test nodes (VI, V2, V3, V4) have been chosen. The test node vol-
tages have been determined by the method of Sections 6 or by the use of a circuit
simulation program. The origin of the data is immaterial for the intended fault isola-
tion. The voltages are tabulated below.

FO F1 F2 F3 F4 F5 F6 F7 F8

VI 5.0 7.0 7.4 7.3 7.2 9.6 9.7 9.8 5.2
V2 9.0 5.0 6.0 6.4 6.2 5.1 5.2 5.3 9.2
V3 9.5 6.0 6.1 6.2 8.0 6.3 6.4 5.3 4.0
V4 5.0 5.1 5.2 8.8 6.0 6.1 9.0 5.3 6.2

Table 7.1 Calculated voltages of all test nodes.

For each test node we can define its ambiguity sets voltage ranges and circuit con-
ditions. This process becomes very clear if we present the information in Table 7.1 in
the form of plots as shown in Fig. 7.1. Circuit conditions that belong to the same
ambiguity set correspond to the points in Fig. 7.1 that form a "cluster". With the aid
of Fig. 7.1, we can easily construct the following table for ambiguity sets.

4
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Figure 7.1 Formation of ambiguity sets.



-41-

(Node, amb. set) circuit conditions voltage range

(I,1) FO, F8 4.4--5.9
(1,2) FI,F2,F3,F4 6.4 -- 7.8
(1,3) F5,F6,F7 9.0-- 10.4
(2,1) FIF5,F6,F7 4.5-- 5.6
(2,2) F2,F3,F4 5.7 -- 6.9
(2,3) FO,F8 8.4 -- 9.8
(3,1) F8 3.3-- 4.4
(3,2) F7 4.6- 5.7
(3,3) FI,F2,F3,F5,F6 5.8-- 6.9
(3,4) F4 7.3-- 8.7
(3,5) F0 8.7-- 10.2
(4,1) FO,FI,F2,F7 4.5 -- 5.5
(4,2) F4,F5,F8 5.7 -- 6.8
(4,3) F3,F6 8.2 -9.6

Table 7.2 Ambiguity sets contents and voltage ranges.

Note that node 3 has 5 ambiguity sets, while nodes 1, 2, 4 each has 3 ambiguity
sets.

The range of each ambiguity set in Table 7.2 is determined in the following
manner. First, the center of each cluster is taken to be the average of the two extreme
values of the cluster. Next a range of ±0.7 volt from the center is tentatively set. After
the tentative ranges for all ambiguity sets have been calculated, a check is made to see
whether the ranges of any two ambiguity sets (of the same test node) overlap. If so,
both ranges are reduced by an equal amount, until a gap or 0.1 or 0.2 volt is obtained.
After such revisions, the ranges are accepted for use. As an example, consider ambi-
guity sets (3,2) and (3,3) in Table 7.2. The second ambiguity set of node 3 has only one
value of 5.3 volts (corresponding to F7), which is then also the center value. Therefore,
ambiguity set (3,2) has a tentative range from 4.6 to 6.0 volts. The third ambiguity set
of node 3 has two extreme values 6.0 and 6.4 (corresponding F 1 and F6, respectively),
and hence a center value of 6.2 volts. Therefore ambiguity set (3,3) has a tentative
range from 5.5 to 6.9. These two ranges overlap. We decrease the upper boundary of
set (3,2) from 6.0 to 5.7, and increase the lower boundary of set (3.3) from 5.5 to 5.8.
Each range is reduced by 0.3 volt, and a gap of 0.1 volt has been created. This
explains how the range from 5.8 - 6.9 is obtained for ambiguity set (3,3). Similar
adjustments are made for all ambiguity set ranges.
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7.2 Fault Isolation by Intersection of Ambiguity Sets

Suppose that one ambiguity set of some test node VJ contains only one circuit
condition FK, then whether that circuit condition has occurred can be determined by

measuring node voltage VJ only. In this case, we say that fault FK has been isolated

For example, let the measured value of V3 for the above hypothetical circuit be 8.2
volts. Then Table 7.2 indicates that the value belongs to ambiguity set (3,4). Since this

set has only one element, namely F4, the circuit must be under the condition of fault

#4.

On the other hand, if we measure one node voltage only, and obtain V3 = 6.5
volts we will not be able to isolate the fault. Table 7.2 indicates that 6.5 volts belongs

to ambiguity set (3,3), and the circuit may be under any one of the following condi-

tions: F1, F2, F3, F5, or F6. Clearly, to isolate the fault, more test nodes must be

used.

Let us see how the use of additional test nodes can help isolating the faults. We

shall disregard Rule 1, but carry out Rule 2 of [4] (see also Section 2.2) more systemati-

cally by constructing an "ambiguity sets intersection table" as shown in Table 7.3
.below. To avoid verbosity, we simply say "intersection of VJ and VK" when we really

mean the intersection of ambiguity sets of these nodes.

V4 F0,FI F4,F5 F3,F6
V3 F2,F7 F8

F8 4 F8

F7 F7 4 4,

FI,F2,F3 FI,F2 F5 F3,F6
F5,F6

F4 1 , F4

FO FO 4

Table 7.3 Intersection of ambiguity sets of V3 and V4.

In the above table the row headings contain ambiguity sets of nodes 3, whereas the

column headings contain those of node 4. Each (ij) block of the matrix contains the

result of intersection of ambiguity sets (3,i) and (4,j), with 4, denoting a null set. For

example, the content of the (3.1) block is determined as follows:

amb. set (3,3) n amb. set (4,1)

- {F1,F2,F3,F5,F6} n (F0,F1,F2,F7} = {FI,F2}

We note that this intersection yields a total of 7 ambiguity sets: (F8), (F7}, (F4},



-43-

(FO), (F5}, {FIF2}, {F3,F6}. In particular, F5 has been isolated with the addition of
test node 4. For example, if the measured values are V3 = 6.5 volts and V4 = 6.2
volts, then the circuit condition belongs to ambiguity sets (3,3) and (4.2), according to

Table 7.2. But Table 7.3 shows that the only fault which occurs in both ambiguity set
(3,3) and (4.2) is F5. Therefore we conclude that the circuit is under condition F5.

With two test nodes V3 and V4, we have isolated faults F4, F5, F7, F8 - a 50%
isolation. We note that F1 has not been separated from F2, neither has F3 from F6.
More test nodes must be used to achieve a higher percentage of isolation.

Suppose that we decide to add test node VI with the hope of resolving the ambi-

guity in {FI,F2}, and also in {F3,F6). The effect of adding VI can be seen from the

following intersection table. An ambiguity set with only one element is called a single-

ton. The intersection of a singleton with another ambiguity set is trivially simple -
either a null set or the singleton itself. To save space, operations involving singletons

are not shown in detail in the intersection tables (except in Table 7.3).

VI FO,F8 F1,F2 F5,F6,F7
(V3,V4) _, __F3,F4

FI,F2 ' _ _ FI,F2 _

F3,F6 F3 F6

5 singletons 5 singletons

Table 7.4 Intersection of (V3,V4) with VI

Observe that F3 and F6 have been isolated, but Fl and F2 have not. Let us further

add test node 2. The intersection operation is shown in Table 7.5 below.

'2 F1,F5 F2,F3,F4 FOF8
(V3,V4,VI) F6,F7

F1,F2 F I F2

7 singletons 7 singletons

Table 7.5 Intersection of (V3,V4,V1) with V2.

The faults F I and F2 are now isolated. This indicates that if we use all of the 4 test
nodes, we can have 100% fault isolation. But the result does not imply that one must
use all 4 test nodes to achieve 100% isolation. For example, if the node to be added
after (V3,V4) is V2, instead of VI, we will have the following intersection table.

instead of VI, we will have the following intersection table.
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\V2 F1,F5 F2,F3,F4 FO,F8
(V3,V4) F6,F7

FI,F2 FI F2

F3,F6 F6 F3

5 singletons 5 singletons

Table 7.6 Intersection of (V3,V4) with V2.

The result indicates that 100% fault isolation can also be achieved without test node 1.

7.3 Reduction of the Number of Test Nodes

In the general case, the determination of a minimum set of test nodes to achieve
the highest percentage (not always 100%) of isolation is a very time-consuming process
for large circuits. It can be shown that the computation time is not polynomial-bound.

Fortunately, for practical applications, we need not insist on getting the theoretical
minimum number of test nodes. Any near minimum solution will serve our purpose, if
the solution is simple. In other words, a heuristic method might be more useful for
solving practical problems.

We propose to use the following heuristic procedures for reducing the number of
test nodes.

Procedure 1.

Step 1. Select the node that has the largest number of ambiguity sets. If a tie
occurs, arbitrarily select one among them.

Step 2. Select the next node whose intersection with previously selected nodes will
result in the largest number of ambiguity sets. In case of a tie, arbitrarily select one.

Step 8. If the number of the resultant ambiguity sets is equal to the number of
circuit conditions (no. of faults + 1, the one being for the nominal case), stop. Other-
wise go to Step 2.

Consider the previous example of Table 7.2. Node 3 is selected first, because it
has 5 ambiguity sets, the largest among VI, V2, V3 and V4. Next, on, node from
V2, V3 , and V4 is to be selected. The intersection of V3 with V4 yield a total of 7
ambiguity sets (see Table 7.3). Similarly V3 n Vi yields 6 sets, - d so does V3 fl V2.
Therefore V4 is chosen as the second test node. The third test node is to be selected
from VI and V2. Now (V3 fl V4) n V2 yields 9 ambiguity sets (see Table 7.6) whereas
(V3 n V4) n Vi yields only 8 sets (see Table 7.4). Therefore V2 is chosen. With V3,
V4, V2 chosen as the test nodes, 100% fault isolation is achieved. Test node VI is seen
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to be redundant.

Procedure I will in most cases lead to a near optimum selection of test nodes (in

fact, an optimum selection in the previous example). But even this procedure may be
too time-consuming for large circuits. This is because that in Step 2, every node has to

be intersected with the previously selected group of nodes. Therefore, a further
simplified procedure is proposed below.

Procedure 2.

Step 1. Select the node that has the largest number of ambiguity sets. It a tie

occurs, arbitrarily select one among them.

Step 2. In the remaining nodes, tentatively select one having the largest number of

ambiguity sets. It a tie occurs, pick any one among them. Now obtain the intersection

of this node, VJ, with the previous selected group of nodes. If the intersection increases

the total number of ambiguity sets, then select VJ as a test node. Otherwise, disregard
Vi.

Step 8. If the number of resultant ambiguity sets is equal to the number of circuit

conditions, stop. Otherwise, go to Step 2.

Let us illustrate Procedure 2 with the previous example of Table 7.2. In Step 1,
we select V3 since it has 5 ambiguity sets, the largest among VI, V2, V3, V4. Each of

the remaining nodes. VI, V2, V4 has 3 ambiguity sets. According to Step 2, we may

arbitrarily pick one. Suppose that node 1 is picked. The intersection V3 n Vi has 6
ambiguity sets, one more than that of V3 alone. Therefore, Vi is selected as the second

test node. The third test node is to be arbitrarily selected from V2 and V4. Suppose

that we tentatively pick V2. The intersection V2 f (V3 fl Vi) has 7 ambiguity sets,
one more than that of (V3 n V4). Therefore VI is selected as the third test node.
There are a total of 9 circuit conditions (1 nominal plus 8 faulty conditions). Since
7 < 0, we go through Step 2 another time and include V4 as the fourth test nodes. As

shown previously, with Vi, V2, V3 and V4 all selected as test nodes, we achieve 100%
fault isolation. But this clearly is not an optimum solution, since 3 test nodes V3, V4,
V2 will achieve the same goal.

In most cases Procedure 2 will produce a near optimum solution to the selection of
test nodes. Since its computational effort is much less than that of Procedure 1, we

have implemented Procedure 2 in our present digital computer program.

In reference [4), a distinction is made between "fault detection" and "fault isola-

tion". In our present approach, this distinction requires no additional computational

effort. We include the nominal circuit (designated by FO or NOM) in the ambiguity set
manipulations. Separation of a fault FJ from NOM amounts to fault detection, while

separation among faults is the usual fault isolation.



What happens if all test nodes have been used, and still less than 100% fault isola-
tion is achieved? In this case, the first question to be investigated is whether further
fault isolation is necessary. If several unseparated faults belong to the same SRU (shop

replaceable unit), then further isolation is really unnecessary, since the whole unit has
to be replaced anyway.

Suppose that further fault isolation is necessary. Then there are two avenues open
to solve the problem.

(1) Increase the number of test nodes. Usually, an engineer's familiarity and

experience with the circuit may help in the selection of additional test nodes. In the
absence of such experience, we may initially choose all accessible nodes as the test
nodes, and use Procedure 1 or Procedure 2 described above to eliminate unnecessary
nodes.

(2) Use more input vectors, i.e., test the circuit under more input conditions. Very
little work has been reported in the literature about the design of stimuli for fault isola-

tion. This is a topic for which much researca needs to be done.

Assume that additional input vectors have been decided upon. Then the ambi-

guity set manipulations will have to be modified slightly. Our strategy (as imple-
mented in the digital computer program) is to consider first each node separately. The
ambiguity sets of each node under different input vectors are "intersected" to obtain

the "all-input ambiguity sets". After such "all-input ambiguity sets" have been
obtained for all nodes, they are processed according to Procedure I and Procedure 2 to
select the desired test nodes. The details of the multiple input-vector case is discussed

in a separate technical report r181.

4
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8. AN INTEGER-CODE FAULT DICTIONARY AND POST-TEST FAULT IDEN-
TIFICA TION

8.1 Compilation of the Fault Dictionary

Once the test nodes have been selected using Procedure I or Procedure 2 described

in Section 7, we can determine a unique integer code for each circuit condition. For
this purpose we need only the ambiguity sets table as given by Table 7.2. Each fault
FJ belongs to exactly one ambiguity set of every test node. This information can be
tabulated as shown in Table 8.1 below for the hypothetical example of Table 7.2. We
assume that V3, V4, V2 have been selected as the test nodes.

Circuit condition integer code

V3 V4 V2

FO 5 1 3
F1 3 1 1
F2 3 1 2
F3 3 3 2
F4 4 2 2

F5 3 2 1
F6 3 3 1
F7 2 1 1
F8 1 2 3

Table 8.1 Integer codes for all faults

As an illustration, consider the code 312 for F2. This means that F2 is in the third
ambiguity set of V3, the first set of V4, and the second set of V2. Other codes are

interpreted in the same manner.

As pointed out in Sec. 7.1, fault F4 can be identified by measuring voltage V3
alone, since F4 is the only element in ambiguity set (3,4). Thus, we could have given
F4 an integer code of the form 4XX, where X means "don't care". The code 4XX for
F4 implies that measurements of V4 and V2 are unnecessary (don't care) for the
identification of F4. For the same reason, the following alternative codes could have
been assigned to all faults (other possibilities exist):

-~ -
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Circuit condition integer code

V3 V4 V2

FO 5 X X
F1 3 1 1
F2 3 1 2
F3 3 3 2

F4 4 X X
F5 3 2 X
F6 3 3 1
F7 2 X X
F8 I X X

Table 8.2 Integer fault codes including "don't care"

At first glance, it looks as though the use of Table 8.2 is more preferable to Table

8.1, because some measurements (don't care) need not be done. But in our work we
have preferred Table 8.1 for two reasons:

(1) Once the test connections are available, taking additional voltage readings
involves very little additional effort.

(2) The use of Table 8.1 provides more certainty about fault location than the use
of Table 8.2.

The integer codes in Table 8.1 may now be arranged in the dictionary order

(ascending numbers) as shown in Table 8.3 below, which is what we call an integer-code
fault dictionary.
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Fault code Faults
V3 V4 V2

1 2 3 F8
2 1 1 F7
3 1 1 Fl
3 1 2 F2

3 2 1 F5
3 3 1 F6
3 3 2 F3
4 2 2 F4
5 1 3 FO

Table 8.3 A fault dictionary using test nodes V3, V4, and V2.

Since the rightmost column has only one fault for each code, 100% fault isolation has

been achieved. Had we used only two test nodes V3 and V4, the following fault dic-

tionary would have resulted

Fault code Faults
V3 V4

1 2 F8
I F7

3 1 FI,F2
3 2 F5
3 3 F3,F6
4 2 F4
5 1 FO

Table 8.4 A fault dictionary using test nodes V3 and V4

The above fault dictionary shows that F1 and F2 are not isolated, nor are F3 and F6.
As mentioned earlier further isolation may not be necessary if the unseparated faults
are located within the same "shop replaceable unit " .

The fault dictionary set-up for the multiple input vectors case is discussed in [18].
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8.2 Poet-teat Fault Identification by Dictionary Look Up

In Section 2 we reviewed the fault dictionary approach of 141. The fault dictionary
consists of the calculated voltages of all test nodes under all fault conditions. After the
test on a faulty circuit has been made, the post-test analysis to identify the fault
involves the calculation of many "sum of squared deviations". See Section 2.3.

The most attractive feature of our proposed integer-code fault dictionary is that no
arithemetic operations are needed after test. We only have look up the dictionary to
identify the fault (or a group of faults). Since the dictionary entries are arranged in a
prescribed order (ascending integers in the present case), the looking-up operation
becomes very simple. We will now illustrate the procedure with a specific example.

Let us continue with the hypothetical example of Table 7.2. Suppose that a test
on the faulty circuits yields the following readings:

V3 = 6.2, V4 = 8.5, V2 = 6.0 (volts)

Referring to Table 7.2, we see that the reading of V3 falls in ambiguity set 3, V4 in set
3, and V2 in set 2. Therefore, the circuit condition has an integer code 332. Now refer
to the fault dictionary, Table 8.3. There is only one fault associated with the code 332.
Therefore we conclude that fault F3 has occurred.

What happens if the voltage reading of some test node does not fall in any of its

ambiguity set ranges? If we use the fault dictionary approach of 14], there is a danger
of being led to a wrong c:onclusion. This is because that one of the faults, although not

the actual fault, may produce a minimum SSD (see Section 2.3) small enough for us to
believe that it has occurred. In contrast, using our present approach, we will not draw
any conclusion about the circuit condition - a case of "no decision". Such a situation
indicates that either the fault list (of hard failures) is not comprehensive enough, or the
fault is not a hard failure. This former case can be remedied by expanding the fault
list and recompile the fault dictionary. The latter ase of soft failures requires a com-
pletely different approach for diagnosis. Volume 2 of this technical report describes a
new ac multifrequency diagnosis method for soft failure [191.

In the fault dictionary described above, the code for each fault is of the form

It 12 ' IN

where N is equal to the number of test nodes, and the largest value for each integer Ii is

equal to the number of ambiguity sets of its associated test node. The decision rules
used to identify the fault are in the form of multiple level logic. This is quite con-
venient if the fault dictionary look-up operation is mannual, i.e., a person actually
turns the page and finds the codes. But this operation can also be made completely
automatic, i.e., the technician need only feed in the test data, a decision making circui-
try will process the ata and display the fault number FJ automatically. To achieve

_____I-



4 this, the multilevel logic must be converted into binary logic. The detail.4 of this
* conversion and a scheme for hardware implementation is described in 118].

.4
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9. A COMPLETE VIDEO AMPLIFIER CIRCUIT EXAMPLE

With the sole purpose of explaining the basic principles of our new approaches, we
have in Section 4 to 8 used very simple examples so that each example can be worked
out in full. Our ultimate aim of course is to implement our techniques and apply to

*. realistic circuits. We have written a digital computer program that employs full matrix
technique and handiles medium size networks up to the size of a video amplifier which
we use as the test circuit is this initial stage of the project. Since the main concern at

this point is demonstrating the feasibility of the approach, no effort has been made to
optimize the computer codes, nor has any consideration been given to make the pro-

gram user orientated. The documentation of this program is given in [20].

We shall now illustrate our new approach to dc fault diagnosis usng the computer
outputs generated for a practical circuit.

Figure 9.1(a) shows the schematic diagram of a video amplifier. The engineer,
based on his experience, preselects 16 faults for detection. The list of faults is given in

Table 9.1. Note that the nominal case is just one of the many circuit conditions, and is
listed as case #1 in Table 9.1

number description

1 nominal case
2 LI and/or L2 open
3 L4 open
4 L3 open
5 L7 open
6 L5 and/or L6 open
7 Q1 base open

8 Q2 base open
9 C4 shorted

10 C6 shorted
11 C3 shorted
12 C5 shorted
13 C8 shorted
14 C9 shorted
15 QI, B-E shorted
16 Q2, B-E shorted

Table 9.1 Definition of Faults

.... aJ-______________________ ...
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The piecewise linear models for transistors QI and Q2 are next obtained, with the

fault conditions QIBES, Q2BES, QlBO, Q2BO represented by switches. For analysis
purpose, the circuit schematic is replaced by the piecewise linear model shown in Figure

9.1(b). The 11 independent current sources in Figure 9.1(b) actually have zero values.
They are required by the n-port theory to facilitate the calculation of the test nodes
voltages. Initially, 11 test nodes are chosen and they are the nodes numbered 2, 6, 7, g,

11, 12, 13, 14, 18, 19 and 21.

The method used to analyze the piecewise linear network is fully explained in Sec-

tion 6. In Table 9.2, we show a portion of the computer output that contains all test
node voltages under all fault conditions.

Fl F2 F3 F4

V2 1.21 5.81 5.18 1.21

V6 3.65 3.65 3.65 3.65
V7 -8.00 -8.00 -5.81 -8.00
V9 -6.95 5.81 5.81 -6.95

Table 9.2 Node voltages for all faults.

Next, the ambiguity sets at each test node are determined using the algorithm

similar to that described in Section 7. The computer output is a table of ambiguity set
ranges. The portion for test node 2 is shown in Table 9.3. Similar tables are printed
out by the computer for all test nodes.

ambiguity set voltage range fault cases

1 0.51 1.91 1,4,6,8,10,11,13,14,16
2 5.11 6.51 2,3,5
3 7.30 8.00 7
4 -0.70 0.70 9
5 1.48 2.88 12
6 4.30 5.70 15

Table 9.3 Ambiguity sets for node 2.

A - -_fornode2.
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As shown above, there are 6 ambiguity sets for node 2. Ambiguity set 2 is from
5.11 to 6.51 volts, and contains F2, F3, FS.

The algorithm described in Section 7 is used to process the above tables with the
aim of reducing the number of test nodes to near minimum. The computer output
from this algorithm shows that in the present case only 5 test nodes voltages are neces-
sary: V2, VII, V13, V7, and V21. The algorithm at the same time generates the
integer codes for all faults. These computer generated codes are then sorted in ascend-
ing order to form the fault dictionary as shown in Table 9.4.

Fault code Fault number
(V2, ViI, V13, V7, V21)

1 1 1 1 1 1,4,11
11112 14
12211 6
11411 16
13111 8
1431 1 10
15111 13
21111 2
21121 3
22221 5
31111 7
41111 9
51111 12
61111 15

Table 9.4 Fault dictionary for the video amplifier.

To illustrate the use of this fault dictionary, suppose that we have a faulty video
amplifier with the following measured node voltages:

V2=1.2, V13=8.0, V1=0.5, V7=-8.0, V21=-8.0 volts.
:4

Referring to Table 9.3, we find that the fault is in ambiguity set I for node 2. Simi-
larly, referring to the remaining tables (not shown here, but given in [181, we find the
fault is in set 3 for node 13, set I for node 11, set 1 for node 7 and set 1 for node 21.
Hence the integer code is 13111. Now referring to Table 9.4, we find that this
corresponds to fault number 8. Further referring to Table 9.1, we see that the fault
has been determined as F8, i.e., transistor Q2 base open.
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10. CONCLUSION AND FURTHER RESEARCH

DC fault diagnosis has been found quite useful for identifying hard failures which

account for about 80% of failures in analog electronic equipment (4]. In order to

enhance of capability of the dc fault dictionary approach we have in this research pro-

ject attacked the problem with new techniques: These include:

(1) Model all nonlinearities by piecewise linear characteristics.

(2) Use switches to represent open circuits and short circuits.

(3) Solve the piecewise linear resistive network containing switches by the use of

multiport theory and Lemke's complementary pivot algorithm.

(4) Use multilevel logic to reduce the number of test nodes and to generate integer

fault codes for the fault dictionary.

A digital computer program 120] has been written to implement these techniques.

The program employs full matrix technique and can adequately handle medium size cir-
cuits such the video amplifier circuit shown in Section 9.

Although the feasibility of our new approach has been established, much research

remains to be done before user oriented software and hardware can be produced to han-

dle larger circuits (at least one order of magnitude larger than the video amplifier cir-
cuit of Section 9). We list below several topics we consider as important for future stu-
dies.

(1) Investigate the use of sparse matrix techniques in all phases of the computation

in order to handle larger circuits.

(2) Implement the post-test analysis technique developed in this project in

hardware, so that after the measured voltages are received, the ATE will display the

number of fault case automatically without any human intervention.

(3) Investigate the construction of piecewise linear macro models for "shop replace-

able units."

(4) Devise more effective fault isolation algorithms. This study naturally includes

the selection of test nodes and the design of input stimuli.

(5) Investigate the nondeterministic aspects of de fault diagnosis. This study will
consider the device parameters as random variables instead of fixed values. At present,

the only precaution we have against measurement inaccuracies and device parameter
variation is by widening the gaps between adjacent ambiguity sets. Apparently, a more
elegant theory and a more powerful computational techniques is needed.
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